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Fig. 3—Coupling as a function of angle 6.

hole acting as a waveguide beyond cut-off.
E, is the normal component of the electric
field and H; is the transverse component of
the magnetic field both in the dielectric
guide at the coupling hole. The longitudinal
component of the magnetic field I, is neg-
lected. S is a power normalizing factor, % is
the diameter of the hole, Ao is the free-space
wavelength, and 7 is the specific impedance
of free space. Fig. 2 defines the angle 6. If ¢,
the thickness of the plane, is very small, the
ratio F.(f)/Fu(f)~1 and the equations
further simplify

C = T[1 + g cos 6]

and

Cand D are given in relative values, T is
a constant of proportionality, and g is ap-
proximately the ratio of magnetic to electric
coupling.

An experimental dielectric image line
coupler was investigated at 24.4 kmcps. Fig.
2 illustrates the arrangement of the experi-
ment. The ground plane thickness was 0.026
inch. and the hole size was 0.101 inch in
diameter. For these dimensions, Fu(f) was
1.112 and F.(t) was 0.827. The ratio
F.()/Fx(t) then is 0.742 and should be used
(instead of 1.00) if greater accuracy is called
for. Fig. 3 shows the variation of the coupling
as a function of the angle 0. Plotted in the
same figure is-a curve called. “Theoretical”
which is of the form: C=T(14g cos 8). The
factor g is approximately equal to 4, the
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ratio of magnetic to electric coupling. The
magnitude of the coupling is normalized so
that at 6=0° C=10. Similar data were
taken for hole diameters of 0.078, 0.082,
0.093, 0.111, 0.128 inch with no substantial
differences apparent. .

Fig. 4 illustrates how this arrangement
may be used as a directional coupler. The
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Fig. 4—Direct coupling.

solid line at § =78° represents the orientation
of the secondary guide with respect to the
primary guide. In one direction, the coupling
is approximately zero whereas in the other
direction it is 3.5 relative units.

Many other possible arrangements of
holes and slots may be used to produce
equivalent results or to improve the coupling
and directivity behavior.

D. J. ANGELAKOS
Elec. Engrg. Dept.
Univ. of Calif.
Berkeley 4, Calif.

An Extension of the Concept of Stop
and Pass Bands of a Zobel Type
Filter to a General Reciprocal Two
Port Network Which has a Non-
loxodromic Transformation*

The conventional treatment! of the Zobel
filter starts with symmetrical T or = sections
of pure reactances and then develops the
iterative measures of the network; the fixed
points and the propagation constant. It is

* Received by the PGMTT, March 9, 1959.

1W, L. Everitt and G. E. Anner, “Communica-
tion Engineering,” McGraw-Hill Book Co., Inc.,
New York, N. Y.; 1956.
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shown that the propagation constant is
either pure real (stop band)? or pure imagi-
nary {pass band). These iterative measures
can be worked out for the general T section.
Fig. 1 shows the nomenclature used for the
symmetrical T section and the general two
port.
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Fig. 1—(a) The symmetrical T section,
(b) the asymmetrical T section.

TABLE I

(a) The symmetrical T section

Z1
coshy =1 4 ~—
2Z2

Z:2
Zig =2Zo = A ZiZa + —
4

(b) The asymmetrical T section

. Zit Zs
coshy =1 4+ ——
22>
/ Zi ¥ Zs\? -
Zit =21 —2Zs & /t —-;4* + {2y A Z5) 22

Table 1 lists the equations for the fixed
points and the propagation constant for both
networks. The network properties can also
be developed as a bilinear transformation,?
and the network can be classified by its type
of transformation. For the two port, the
input impedance is related to the output
impedance by

(Zt-Z)Z VAVAS SYAVAS VAV A
Z Z,
1 7 Zot2Z;

Z, Zs

Z'=

The trace of the normalized transforma-
tion is 24 (Z1+Z3) /Zs which is twice cosh «.
For the transformation to be nonloxodromic
the trace must be real, hence the sum of the
two series impedance phasors is either in
phase or 180° out of phase with the phasor
impedance of the shunt arm. It has been
shown? that it is always possible in a micro-
wave two port, to find reference planes at
which the transformation is nonloxodromic.
Thusly for any microwave network, refer-
ence planes can be found where cosh v is
real. If the transformation is hyperbolic
(|a+d| >2)v will be real. If the transforma-
tion is elliptic (1a+d| <2)v will be imagi-

2 With the exception of a possible 180° phase re-
versal.

3 E. F. Bolinder, “Impedance and polarization-
ratio transformations by a graphical method using
isometric circles,” IRE TRANS. ON MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-4, pp. 176-180;
July, 1956.

+D. J. R. Stock and L. J. Kaplan, “The analogy
between the Weissfloch transformer and the ideal
attenuator (reflection coefficient transformer) and
an extension to include the general lossy two port,”
IRE TRANS. ON MICROWAVE THEORY AND TECH-
NIQUES, to be published.
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nary and ¢+d= 12 the cut off conditions
will be obtained. The cut off may be either
between loss and phase shift as in a Zobel
filter or between gain and phase shift be-
cause the cosine is an even function; there-
fore, it cannot perceive if the hyperbolic
transformation is due to gain (negative
resistance) or loss.

If the impedance plane is mapped onto
the Riemann sphere, the criterion for de-
termining whether the network is in the
stop or pass band will depend on whether
the Pascal line® cuts or does not cut the
Riemann sphere (the parabolic transforma-
tion occurs at tangency). These transforma-
tion characteristics have been used by
Bolinder® to show the analogy of the expo-
nential line to the high pass filter and can be
used to denote the difference between lossy
and lossless uniform transmission lines. This
classification can be used for any device, as
waveguide, which has cut off phenomena or
accounts for losses in any transmission de-
vice.

Thus it is seen that it is always possible
to find reference terminals for a given net-
work at which the resultant is either pure
gain or pure loss or pure phase shift in the
Zobel sense. Of course the insertion loss will
depend on the termination as well as the
properties of the two port.

D. J. R. Stock

L. J. KaprLan

Elec. Engrg. Dept.
New York Univ., N. Y,

5 E. F. Bolinder, “Impedance transformations by
extension of the isometric circle method to the three
dimensional hyperbolic space,” J. Math. Phys., vol.
36, pp. 49-61; April, 1957.

s E. F. Bolinder, “Study of the exponential line by
the isometric circle method and hyperbolic geometry,”
Acta Pol., Elec. Engrg. Series, vol. 7, no. 8; 1957.

Characteristic Impedance of Split
Coaxial Line*

A few years ago, the balun was studied
at our laboratory and it is important to
know the characteristic impedances of the
line. There are several papers'™ concerning
this characteristic impedance. The cross
section of the transmission lines is shown in
Fig. 1 and the characteristic impedances are
calculated in these papers. Last year, a
paper was published in the IRE Trans. on
MicrowAVE THEORY AND TECENIQUE on
this problem, using similar methods de-
scribed below. I wish to describe my ap-
proach and show a disparity.

* Received by the PGMTT, December 9, 1958.

1 H. Kogd and K. Morita, “Electrode capacity of
slit-coaxial cylinder,” J. Inst. Elec. Commun. Eng.,
Japan, vol. 38, pp. 548-552; July, 1955. .

2 H. Kogs and K. Morita, “Electrode capacity of
slit-coaxial cylinder,” (supplement) J. Iust. Elec.
Commun. Eng., Japan, vol. 39, pp. 33-36; January,
1956.

3 J. Smolarska, “Characteristic impedance of the
slotted coaxial line,” IRE TRANS. ON MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-6, pp. 161-164;
April, 1958,
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Fig. 2—Relation of the split coaxial line and
its decomposite construction.

I

Fig. 1—Cross section of the transmission lines and
line construction. A) Split cylinder, B) split
coaxial, C) split coaxial with outer pipe; a) thin
outer wall, b) thick outer wall; I) line composed of
sides 1, 2, IT) line composed of sides 1, 2 and cen-
tral conductor 3.

The characteristic impedance of the
split coaxial line shown in Fig. 1 can be
classified physically and mathematically as
follows:

A) The split cylinder
a) the thin outer wall
b) the thick outer wall
B) The split coaxial line
a) the thin outer wall
b) the thick outer wall
C) The split coaxial with outer pipe.

There are two cases. In the first case, the
split two sides 1 and 2, compose the transmis-
sion line (I) and, in the second case, the split
two side 1 and 2, and a central conductor 3
form the transmission line (II) shown in Fig.
1. The mathematical treatment of these
cases are difficult because of the thickness of
the outer conductors, A-a¢, A-b, and B-a in
the above table are described in a previous
treatise.l:* The same results were obtained
by J. Smolarska by using a similar method.
For the remaining problems B-b, one must
rely on an approximate solution, the ac-
curate solution being much too difficult.

The characteristic impedance of B-b with
regard to the split coaxial shown in Fig. 2,
is acquired from the accurate solution by
using the accurate values of the characteris-
tic it‘ﬂpcdanccs of the split cylinder consider-
ing wall thickness and the split coaxial with
thin outer wall.

The characteristic impedance composed
of the outer and a central conductor of
B-b is almost equal to that compared with
the case of a zero thickness since the width
of the split is narrow and the disturbance
of the split portion shown in Fig. 3 differs
slightly by the existence of the thickness.

Fig. 3—Disturbance by the thick outer wall.

The curved lines in Fig. 4 show the re-
sults of the experiment using a water tank,
and these are almost equal to the computed
value using the approximate theory. A
treatise similar to Smolarska’s® has already
been published. Our approach used almost
the same transformation equation as found
in treatise, but in detail, small differences
are found in the papers. For example, Com-
pare A3 with B.2

1) The next formulas are adopted to trans-
form the original figure into the orthogo-
nal line coordinates.

A) w=logZ (Transformation).
B) p = Rue” (Transformation).
2) The S-C transformation is common in

both 4 and B, but the corresponding

points differ. -

A) Corresponds with three unknown
constants «, 8, and v for the singular
point.

B) Corresponds with two unknown con-
stants «, 8, for the character of the
elliptic function.

3) The enumeration method of unknown
constants.

A) This uses the definite integral, namely
a definite integral is used for the dis-
tance between each singular point.

B) This uses the indefinite integral and
substitutes to acquire the value of the
corresponding in its consequent equa-
tion.

The numerical computation.

A) The numerical computation used the
approximate calculating equation as
follows: 2>1, 2>, and > a. These
relations are useful cnly to the case of
the particular split angle. However,
the errors are not investigated.

B) The approximate calculating equa-
tion is not in use and accordingly the
split width is extended to the whole
range.

5) The numerical compution of the charac-
teristic impedance is calculated in the
following cases.

Line I).

A) R/r=2.3,2.6,2.72,3.37.

B) Z,=25Q, 509, 150, (for the no splits).
Line (IT).

A) R/r=272.

B) Zoy=259, 302, 150Q, (for the no splits).
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