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ratio of magnetic to electric coupling. The

magnitude of the coLlpling is normalized so

that at 0=0°, C= 10. Similar data were

taken for hole diameters of 0.078, 0.082,

0.093, 0.111, 0.128 inch with no substantial

differences apparent.

Fig. 4 illustrates how this arrangement

may be used as a directional coupIer. The

Fig. 2—Experimental set-up
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Fig. 3—COupling as a function of angle 8.

hole acting as a waveguide beyond cut-off.

Em is the normal component of the electric

field and H~ is the transverse component of

the magnetic field both in the dielectric

guide at the coupling hole. The longitudinal
component of the magnetic field HZ is neg-
lected. S is a power normalizing factor, h is
the diameter of the hole, xo is the free-space
wavelength, and q is the specific impedance
of free space. Fig. 2 defines the angle 0. If t,
the thickness of the plane, is very small, the
ratio F,(t) /F~(t) -1 and the equations

further simplify

c= T[l+gcose]

and

l+gcoso
D = ————— .

I–gcose

c and ? are given in relative values, T is

a constant of proportionality, and g is ap-

proximately the ratio of magnetic to electric

coupling.
An experimental dielectric image line

coupler w~s investigated at 24.4 kmcps. Fig.

2 illustrates the arrangemellt of the experi-

ment. The ground plane thickness was 0.026

inch and the hole size was 0.101 inch in

diameter. For these dimensions, F~(f) was
1.112 and F.(t) was 0.827. The ratio
F.(L) /F~(t) then is 0.742 and should be used

(instead of 1.00) if greater accuracy is called
for. Fig. 3 shows the variation of the coupling

as a function of the angle O. Plotted in the
same figure is a curve called ‘~Theoretical”
which is of the form: C = T(I +g cos 8). The
factor g is approximately equal to 4, the
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Fig. 4—Direct coupling.
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shown that the propagation constant is

either pure real (stop band)z or pure imagi-
nary (pass band). These iterative measures

can be worked out for the general T section.
Fig. 1 shows the nomenclature used for the

symmetrical T section and the general two
port.

+Z* +Z2

(a) (b)

Fig. 1—(a) The symmetrical T section,
(b) the asymmetrical T section.

TAB1.E I

(a) The symmetrical T section

ZI
cosh-, =l+—

2Z,

4
Z,2

zit=zo =*/ Zlz, + —-
4

(b) The asymmetrical T section

Z* + Za
cosh y = 1 + —Zz=

solid line at o = 78° represents the orientation

of the secondary guide with respect to the
primary guide. In one direction, the coupling

is approximately zero whereas in the other

direction it is 3.5 relative units.
Many other possible arrangements of

holes and slots may be used to produce
equivalent results or to improve the coupling

and directivity behavior.
D. J. ANGELAKOS

Elec. Engrg. Dept.

Univ. of Calif.

Berkeley 4, Calif.

An Extension of the Concept of Stop

and Pass Bands of a Zobel Type

Filter to a General Reciprocal Two

Port Network Which has a Non-

loxodromic Transformation*

The conventional treatment’ of the Zobel

filter starts with symmetrical T or rr sections

of pure reactance and then develops the
iterative measures of the network; the fixed
points and the propagation constant. It is

* Received by the PGMTT, March 9, 1959.
1 W. L. Everitt and G. E. Anner, “Communica-

tion Engineering, ” McGraw-Hill Book Co., Inc.,
New York, N. Y.; 1956.

Tab!e 1 lists the equations for the fixed

points and the propagation constant for both
networks. The network propel-ties can also

be developed as a bilinear transformation,3
and the network can be classified by its type

of transformation. For the two port, the
input impedance is related to the output

impedance by

(Z,+Z,)Z Z,Z,+Z2Z3+Z3Z1
—.——–4———————

~ z+—z—

The trace of the normalized transfornla-

tiou is 2 + (Zl+ZJ/ZZ which is twice cosh ~.
For the transformation to be nonloxodrornic

the trace must be real, hence the sum of the
two series impedance phasors is either in
phase or 180° out of phase with the phasor
impedance of the shunt arm. It has been
shown4 that it is always possible in a micro-
wave two pol-t, to find reference planes at
which the transformation is nonloxodromic.
Thusly for any microwave network, refer-

ence planes can be found where cosh v is
real. If the transformation is hyperbolic
(I a+d I > 2)-Y will be real. If the transforma-
tion is elliptic ( \ a +d I < 2)? will be imagi-

z With the exception of a possible 180° phase re-
versal.

~ E. F. Bolinder, “Impedance and polarization-
ratio transformations by a graphical method using
isometric circles, ” IRE TRANS. ox MICROWAVE
THEORY AND TECHNIQUES, vol. MTT-4, PP. 176–180;
JuIY, 1956.

~ D. J. R. Stock and L. J. Kaplan, “The analogy
between the Weissfloch transformer and the ideal
attenuator (reflection coefficient transformer) and
an extension to include the general lossY two port, ”
IRE TRANS. ON MICROWAVE THLrORy AND T~cw
NIQUES, to be published.
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nary and a +d = t 2 the cut off conditions

will be obtained. The cut off may be either

between loss and phase shift as in a Zobel

filter or between gain and phase shift be-

cause the cosine is an even function; there-
fore, it cannot perceive if the hyperbolic

transformation is due to gain (negative

resistance) or loss.

If the impedance plane is Imapped onto
the Riemann sphere, the criterion for cle-
termining whether the network is in the
stop or pass band will depend on whether
the Pascal line5 cuts or does not cut the
Riemann sphere (the parabolic transforma-
tion occurs at tangency). These transforma-
tion characteristics have been used by

Bolinder’ to show the analogy of the expo-

nential line to the high pass filter and can be

used to denote the difference between 10SSY

and Iossless uniform transmission lines, This

classification can be used for any device, as
waveguide, which has cut off phenomena or

accounts for losses in any transmission de-
vice.

Thus it is seen that it is always possible
to find reference terminals for a given net-
work at which the resultant is either pure

gain or pure loss or pm-e phase shift in the
Zobel sense. Of course the insertion loss will

depend on the termination as well as the
properties of the two port.

D. J. R. STOCK

L. J. KAPLAN

Elec. Engrg. Dept.

New York Univ., N. Y.

Fig. 2 -Relation of the split coaxial line and
its decomposite construction.
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Fig, 3—Disturbance by the thick outer wall,

The curved lines in Fiq. 4 show the re-

sults of the experiment using a water tank,

and these are almost equal to the computed

value using the approximate theory. A
treatise silmilar to Srnolarska’s$ has already
been published. Our approach used almost
the same transformation equation as found
In treatise, but in detail, small differences
are found in the papers. For example, Com-
pare As with B.’

(o13

bA/

T The next formulas are adopted to trans-
form the original figure into the orth ogo-

nal line coordinates.

1)-L

Fig. l—Cross section of the transmission lines and
line construction. .4) Split cylinde;, B) split
coaxial, C) split coaxial with outer pipe; a) thin
outer wall, b) thick outer wall; I) line composed of
sides 1, 2, II) line composed of sides 1, 2 and ten.
tral conductor 3.

A) co= log Z (Transformation).

B) ,u = Rlez (Transforrnation).

The characteristic impedance of the
split coaxial line shown in Fig. 1 can be

classified physically aucl mathematically as
follows :

A) The split cylinder

a) the thin outer wall

b) the thick outer wall
B) The split coaxial line

a) the thin outer wall

b) the thick outer wall

C) The split coaxial with outer pipe.

The S-C transformation is common in
both A and B, but the corresponding

points differ.
A) Corresponds with three unknown

constants a, P, and y for the singular
point.

B) Corresponds with two unknown con-

stants a, D, for the character of the

elliptic function.
The enumeration method of unknown

constants.
A) This uses the definite integral, namely

a definite integral is used for the dis-
tance between each singular point.

B) This uses the indefinite integral and
substitutes to acquire the value of the
corresponding in its !:onsequent equa-

2)

3)

‘rhere are two cases. In the first case, the
split two sides 1 and 2, compose the transmis-

sion line (I) ancl, in the second case, the split
two side 1 and 2, and a central conductor 3
form the transmission line (II) shown in Fig.

1. The mathematical treatment of these

cases are difficult because of the thickness of
the outer conductors, A-G, A-b, and B-a in

the above table are described in a previous

treatise.lz The same results were obtained
by J. Smolarska by using a similar method.
For the remaining problems B-b, one must
rely on an approximate solution, the ac-

curate solution being much too difficult.

The characteristic impedance of B-b with
regard to the split coaxial shown in Fig. 2,
is acquired from the accurate solution by
using the accurate values of the characteris-
tic irnpcdanccs of the split cylinder consideri-

ng wall thickness and the split coaxial with
thin outer wall.

The characteristic impedance composed
of the outer and a central conductor of
B-b is almost equal to that compared with

the case of a zero thickness since the width
of the split is narrow and the disturbance
of the split portion shown in Fig. 3 differs

slightly by the existence of the thickness.

Characteristic Impedance of Split

Coaxial Line*

A few years ago, the bahm was studied
at our laboratory and it is important to
know the characteristic impedances of the
line. There are several papersl-a concerning
this characteristic impedance. The cross
section of the transmission lines is showlL in
Fig. 1 and the characteristic impedances are
calculated in these papers. Last year, a
paper was published in the IRE TRANS. ON

M,CROWAV13 THEORY AND TECHNIQUE OLI

this problem, using similar methods de-

scribed below. I wish to describe my ap-
proach and show a disparity.

tion.

The nLlmerical complication.

A) The numerical cornoutation used the

4)

approximate calculating equation as
follows: B>> 1, fl>>y, and ~>>a. These
relations are useful c,nly to the case of

the particular split angle. However,

the errors are not investigated.
B) The approximate calculating equa-

tion is not in use and accordingly the
split width is extended to the whole

range.
The numerical compution of the charac-
teristic impedance is calculated in the

following cases.

5)

* Received by the PGMTT, December 9, 19.58.
I H. KogO and K. Morita, “Electrode capacity of

slit-coaxial cylinder, ” 1. Inst. Elec. Corrwmw. Etig.,
Jafxw, VOI. 38, pp. 548–552; July, 1955.

z H. Kog5 and K. Morita, “Electrode capacity of
slit-coaxial cylinder, ” (supplement) J. Inst. Elec.
C~mmu+z, Ew., Ja$an, vol. 39, PP. 33–36; January,
1956.

z J. Smol?rska, “Characteristic ilnpedwlce of the
slotted coaxial line, ” IRE TRAXS. ON MICROWAT-IZ
THEORY AXD TECIINIQUES, vol. MT’I-6, Pp. 161–164;
.4pril, 1958.

Line I).

A) R/v=2.3, 2.6, 2,72, 3.37.

B) ZO=ZSQ, .50Q, 1.5f)Q, (for the no splits).

Line (II).

A) R/Y=2.72.

B) ZO= 25(1, 500, 150fi, (for the no splits).


